In this study transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity-1 (Arg1) a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding (ARG1 KO) both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC17 spaceflight mission. The cultured cell lines were grown within 60mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.