The CLIMCAPS (Community Long-term Infrared Microwave Coupled Product System) algorithm is used to analyze data from the AIRS (Atmospheric Infrared Sounder) and AMSU (Advanced Microwave Sounding Unit). The AIRS instrument is a grating spectrometer (R = 1200) aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. The AIRS in combination with the AMSU constitutes an innovative atmospheric sounding group of infrared and microwave sensors. The AIRS Standard Retrieval Product consists of retrieved estimates of cloud and surface properties, plus profiles of retrieved temperature, water vapor, ozone, carbon monoxide and methane. The temperature profile vertical resolution is 100 levels total between 1100 mb and 0.1 mb, while moisture profile is reported at atmospheric layers between 1100 mb and 300 mb. The horizontal resolution is 50 km.
The CLIMCAPS algorithm uses an Optimal Estimation methodology and uses an a-priori first guess to start the process. A CLIMCAPS sounding is comprised of a set of parameters that characterizes the full atmospheric state and includes a variety of geophysical parameters derived from the CrIMSS data. These include surface temperature and infrared emissivity; full atmosphere profiles of temperature, water vapor and ozone; infrared effective cloud top characteristics; carbon monoxide, methane, carbon dioxide, sulfur dioxide, nitrous oxide, and nitric acid.
This monthly one degree latitude by one degree longitude level-3 product starts with level-2 retrieval products applying the comprehensive quality control (QC) methodology. Comprehensive QC accepts a retrieval if the profile is good to the surface and ensures consistent analysis across all levels and variables.
WARNING: To users of the derived product “co_mmr_midtrop” (carbon monoxide mass mixing ratio to dry air [kg/kg] at ~500 hPa). This variable has a significant bias due to a conversion error: the molecular weight of carbon dioxide (CO2, 48.01 g/mol) was used instead of carbon monoxide (CO, 28.01 g/mol). To correct, simply multiply “co_mmr_midtrop” by 28.01/48.01. Alternatively, derive a profile of mass mixing ratio from scratch using the retrieved column density values (“mol_lay/co_mol_lay”) in the Level 2 files. For further questions or concerns please contact the Sounder SIPS at:
sounder.sips@jpl.nasa.gov