4709 Results
filtered by...
Filter
4709 Results
filtered by
Tags > atmosphere
Clear All
External Link
TL2MTLNS_7 is the Tropospheric Emission Spectrometer (TES)/Aura Level 2 Methanol Nadir Special Observation Version 7 data product. It consists of information for one molecular species for an entire Global Survey or Special Observation. TES was an instrument aboard NASA's Aura satellite and was launched from California on July 15, 2004. Data collection for TES is complete. TES Level 2 data contain retrieved species (or temperature) profiles at the observation targets and the estimated errors. The geolocation, quality, and other data (e.g., surface characteristics for nadir observations) were also provided. L2 modeled spectra were evaluated using radiative transfer modeling algorithms. The process, referred to as retrieval, compared observed spectra to the modeled spectra and iteratively updated the atmospheric parameters. L2 standard product files included information for one molecular species (or temperature) for an entire global survey or special observation run. A global survey consisted of a maximum of 16 consecutive orbits.
Nadir observations, which point directly to the surface of the Earth, are different from limb observations, which are pointed at various off-nadir angles into the atmosphere. Nadir and limb observations were added to separate L2 files, and a single ancillary file was composed of data that are common to both nadir and limb files. A Nadir sequence within the TES Global Survey was a fixed number of observations within an orbit for a Global Survey. Prior to April 24, 2005, it consisted of two low resolution scans over the same ground locations. After April 24, 2005, Global Survey data consisted of three low resolution scans. The Nadir standard product consists of four files, where each file is composed of the Global Survey Nadir observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Nadir observations only used a single set of filter mix.
A Global Survey consisted of observations along 16 consecutive orbits at the start of a two day cycle, over which 4,608 retrievals were performed. Each observation was the input for retrievals of species Volume Mixing Ratios (VMRs), temperature profiles, surface temperature, and other data parameters with associated pressure levels, precision, total error, vertical resolution, total column density, and other diagnostic quantities. Each TES Level 2 standard product reported information in a swath format conforming to the HDF-EOS Aura File Format Guidelines. Each Swath object was bounded by the number of observations in a global survey and a predefined set of pressure levels, representing slices through the atmosphere. Each standard product could have had a variable number of observations depending upon the Global Survey configuration and whether averaging was employed. Also, missing or bad retrievals were not reported. Further, observations were occasionally scheduled on non-global survey days. In general they were measurements made for validation purposes or with highly focused science objectives. Those non-global survey measurements were referred to as “special observations.”
A Limb sequence within the TES Global Survey was three high-resolution scans over the same limb locations. The Limb standard product consists of four files, where each file is composed of the Global Survey Limb observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Limb observations used a repeating sequence of filter wheel positions. Special Observations could only be scheduled during the 9 or 10 orbit gaps in the Global Surveys, and were conducted in any of three basic modes: stare, transect, step-and-stare. The mode used depended on the science requirement. Each limb observation Limb 1, Limb 2 and Limb 3, were processed independently. Thus, each limb standard product consisted of three sets where each set consisted of 1,152 observations. For TES, the swath object represented one of these sets.
Created
October 14 2024
Views
0
External Link
TL2MTLLN_7 is the Tropospheric Emission Spectrometer (TES)/Aura Level 2 Methanol Lite Nadir Version 7 data product. It consists of information for one molecular species for an entire Global Survey or Special Observation. TES was an instrument aboard NASA's Aura satellite and was launched from California on July 15, 2004. Data collection for TES is complete. The TES Lite products were intended to simplify TES data usage including data/model and data/data comparisons. This product can be used for science analysis as each data product is fully characterized. The TES Lite products were also meant to facilitate use of TES data by end users by (1) aggregating product results by month (no averaging is applied), (2) reducing data dimensionality to the retrieved pressure levels, which results in a minimal reduction of information but reduces data sizes by 1/3 to 1/10, (3) applying known corrections quantified through validation campaigns (4) combining data from ancillary files and multiple TES product files that are needed for science analysis (particularly for CH4 and HDO), and (5) removing fields that are not typically used. For example, the HDO product also includes the H2O product; it contains the recommended bias correction for HDO, results are mapped to 18 pressures, and the averaging kernel and error covariances are packed together from the H2O, HDO, and ancillary individual product files into full matrices for easier use by modelers and for science analysis. The products include the mapping matrix to relate the reduced-size retrieval vectors, covariances, and averaging kernels back to the TES forward model pressure grid to support cross-comparison between products and models. NH3 and CH4 contain Representative Tropospheric volume mixing ratio (RTVMR) fields (Payne et al. , 2009) that map the full profile to levels that are most representative of the atmosphere based on the altitude dependent sensitivity of the estimate.
TES Level 2 data contain retrieved species (or temperature) profiles at the observation targets and the estimated errors. The geolocation, quality, and other data (e.g., surface characteristics for nadir observations) were also provided. L2 modeled spectra were evaluated using radiative transfer modeling algorithms. The process, referred to as retrieval, compared observed spectra to the modeled spectra and iteratively updated the atmospheric parameters. L2 standard product files included information for one molecular species (or temperature) for an entire global survey or special observation run. A global survey consisted of a maximum of 16 consecutive orbits.
Nadir observations, which point directly to the surface of the Earth, are different from limb observations, which are pointed at various off-nadir angles into the atmosphere. Nadir and limb observations were added to separate L2 files, and a single ancillary file was composed of data that are common to both nadir and limb files. A Nadir sequence within the TES Global Survey was a fixed number of observations within an orbit for a Global Survey. Prior to April 24, 2005, it consisted of two low resolution scans over the same ground locations. After April 24, 2005, Global Survey data consisted of three low resolution scans. The Nadir standard product consists of four files, where each file is composed of the Global Survey Nadir observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Nadir observations only used a single set of filter mix.
A Global Survey consisted of observations along 16 consecutive orbits at the start of a two day cycle, over which 3,200 retrievals were performed. Each observation was the input for retrievals of species Volume Mixing Ratios (VMRs), temperature profiles, surface temperature, and other data parameters with associated pressure levels, precision, total error, vertical resolution, total column density, and other diagnostic quantities. Each TES Level 2 standard product reporte
Created
October 14 2024
Views
0
External Link
Atmospheric vertical profile estimates and associated errors including the mapping matrix to relate the reduced-size retrieval vectors, covariances, and averaging kernels back to the TES forward model pressure grid.
Created
October 14 2024
Views
0
External Link
TL2CH4N_8 is the Tropospheric Emission Spectrometer (TES)/Aura Level 2 Methane Nadir Version 8 data product. TES was an instrument aboard NASA's Aura satellite and was launched from California on July 15, 2004. Data collection for TES is complete. TES Level 2 data contain retrieved species (or temperature) profiles at the observation targets and the estimated errors. The geolocation, quality, and other data (e.g., surface characteristics for nadir observations) were also provided. L2 modeled spectra were evaluated using radiative transfer modeling algorithms. The process, referred to as retrieval, compared observed spectra to the modeled spectra and iteratively updated the atmospheric parameters. L2 standard product files included information for one molecular species (or temperature) for an entire global survey or special observation run. A global survey consisted of a maximum of 16 consecutive orbits.
Nadir observations, which point directly to the surface of the Earth, are different from limb observations, which are pointed at various off-nadir angles into the atmosphere. Nadir and limb observations were added to separate L2 files, and a single ancillary file was composed of data that are common to both nadir and limb files. A Nadir sequence within the TES Global Survey was a fixed number of observations within an orbit for a Global Survey. Prior to April 24, 2005, it consisted of two low resolution scans over the same ground locations. After April 24, 2005, Global Survey data consisted of three low resolution scans. The Nadir standard product consists of four files, where each file is composed of the Global Survey Nadir observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Nadir observations only used a single set of filter mix.
A Global Survey consisted of observations along 16 consecutive orbits at the start of a two day cycle, over which 3,200 retrievals were performed. Each observation was the input for retrievals of species Volume Mixing Ratios (VMRs), temperature profiles, surface temperature, and other data parameters with associated pressure levels, precision, total error, vertical resolution, total column density, and other diagnostic quantities. Each TES Level 2 standard product reported information in a swath format conforming to the HDF-EOS Aura File Format Guidelines. Each Swath object was bounded by the number of observations in a global survey and a predefined set of pressure levels representing slices through the atmosphere. Each standard product could have had a variable number of observations depending upon the Global Survey configuration and whether averaging was employed. Also, missing or bad retrievals were not reported. Further, observations were occasionally scheduled on non-global survey days. In general they were measurements made for validation purposes or with highly focused science objectives. Those non-global survey measurements were referred to as “special observations”
The organization of data within the Swath object was based on a superset of the Upper Atmosphere Research Satellite (UARS) pressure levels used to report concentrations of trace atmospheric gases. The reporting grid was the same pressure grid used for modeling. There were 67 reporting levels from 1211.53 hPa, which allowed for very high surface pressure conditions, to 0.1 hPa, about 65 km. In addition, the products reported values directly at the surface when possible or at the observed cloud top level. Thus in the Standard Product files, each observation could potentially contain estimates for the concentration of a particular molecule at 67 different pressure levels within the atmosphere. However, for most retrieved profiles, the highest pressure levels were not observed due to a surface at lower pressure or cloud obscuration. For pressure levels corresponding to altitudes below the cloud top or surface, where measurements were not possible, a fill value was applied.
To
Created
October 14 2024
Views
0
External Link
TL2CH4N_7 is the Tropospheric Emission Spectrometer (TES)/Aura Level 2 Methane Nadir Version 7 data product. TES was an instrument aboard NASA's Aura satellite and was launched from California on July 15, 2004. Data collection for TES is complete. TES Level 2 data contain retrieved species (or temperature) profiles at the observation targets and the estimated errors. The geolocation, quality, and other data (e.g., surface characteristics for nadir observations) were also provided. L2 modeled spectra were evaluated using radiative transfer modeling algorithms. The process, referred to as retrieval, compared observed spectra to the modeled spectra and iteratively updated the atmospheric parameters. L2 standard product files included information for one molecular species (or temperature) for an entire global survey or special observation run. A global survey consisted of a maximum of 16 consecutive orbits.
Nadir observations, which point directly to the surface of the Earth, are different from limb observations, which are pointed at various off-nadir angles into the atmosphere. Nadir and limb observations were added to separate L2 files, and a single ancillary file was composed of data that are common to both nadir and limb files. A Nadir sequence within the TES Global Survey was a fixed number of observations within an orbit for a Global Survey. Prior to April 24, 2005, it consisted of two low resolution scans over the same ground locations. After April 24, 2005, Global Survey data consisted of three low resolution scans. The Nadir standard product consists of four files, where each file is composed of the Global Survey Nadir observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Nadir observations only used a single set of filter mix.
A Global Survey consisted of observations along 16 consecutive orbits at the start of a two day cycle, over which 3,200 retrievals were performed. Each observation was the input for retrievals of species Volume Mixing Ratios (VMRs), temperature profiles, surface temperature, and other data parameters with associated pressure levels, precision, total error, vertical resolution, total column density, and other diagnostic quantities. Each TES Level 2 standard product reported information in a swath format conforming to the HDF-EOS Aura File Format Guidelines. Each Swath object was bounded by the number of observations in a global survey and a predefined set of pressure levels representing slices through the atmosphere. Each standard product could have had a variable number of observations depending upon the Global Survey configuration and whether averaging was employed. Also, missing or bad retrievals were not reported. Further, observations were occasionally scheduled on non-global survey days. In general they were measurements made for validation purposes or with highly focused science objectives. Those non-global survey measurements were referred to as “special observations”
The organization of data within the Swath object was based on a superset of the Upper Atmosphere Research Satellite (UARS) pressure levels used to report concentrations of trace atmospheric gases. The reporting grid was the same pressure grid used for modeling. There were 67 reporting levels from 1211.53 hPa, which allowed for very high surface pressure conditions, to 0.1 hPa, about 65 km. In addition, the products reported values directly at the surface when possible or at the observed cloud top level. Thus in the Standard Product files, each observation could potentially contain estimates for the concentration of a particular molecule at 67 different pressure levels within the atmosphere. However, for most retrieved profiles, the highest pressure levels were not observed due to a surface at lower pressure or cloud obscuration. For pressure levels corresponding to altitudes below the cloud top or surface, where measurements were not possible, a fill value was applied.
To
Created
October 14 2024
Views
0
External Link
TL2CH4NS_8 is the Tropospheric Emission Spectrometer (TES)/Aura Level 2 Methane Nadir Special Observation Version 8 data product. TES was an instrument aboard NASA's Aura satellite and was launched from California on July 15, 2004. Data collection for TES is complete. TES Level 2 data contain retrieved species (or temperature) profiles at the observation targets and the estimated errors. The geolocation, quality, and other data (e.g., surface characteristics for nadir observations) were also provided. L2 modeled spectra were evaluated using radiative transfer modeling algorithms. The process, referred to as retrieval, compared observed spectra to the modeled spectra and iteratively updated the atmospheric parameters. L2 standard product files included information for one molecular species (or temperature) for an entire global survey or special observation run. A global survey consisted of a maximum of 16 consecutive orbits.
Nadir observations, which point directly to the surface of the Earth, are different from limb observations, which are pointed at various off-nadir angles into the atmosphere. Nadir and limb observations were added to separate L2 files, and a single ancillary file was composed of data that are common to both nadir and limb files. A Nadir sequence within the TES Global Survey was a fixed number of observations within an orbit for a Global Survey. Prior to April 24, 2005, it consisted of two low resolution scans over the same ground locations. After April 24, 2005, Global Survey data consisted of three low resolution scans. The Nadir standard product consists of four files, where each file is composed of the Global Survey Nadir observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Nadir observations only used a single set of filter mix.
A Global Survey consisted of observations along 16 consecutive orbits at the start of a two day cycle, over which 4,608 retrievals were performed. Each observation was the input for retrievals of species Volume Mixing Ratios (VMRs), temperature profiles, surface temperature, and other data parameters with associated pressure levels, precision, total error, vertical resolution, total column density, and other diagnostic quantities. Each TES Level 2 standard product reported information in a swath format conforming to the HDF-EOS Aura File Format Guidelines. Each Swath object was bounded by the number of observations in a global survey and a predefined set of pressure levels, representing slices through the atmosphere. Each standard product could have had a variable number of observations depending upon the Global Survey configuration and whether averaging was employed. Also, missing or bad retrievals were not reported. Further, observations were occasionally scheduled on non-global survey days. In general they were measurements made for validation purposes or with highly focused science objectives. Those non-global survey measurements were referred to as “special observations.”
A Limb sequence within the TES Global Survey was three high-resolution scans over the same limb locations. The Limb standard product consists of four files, where each file is composed of the Global Survey Limb observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Limb observations used a repeating sequence of filter wheel positions. Special Observations could only be scheduled during the 9 or 10 orbit gaps in the Global Surveys, and were conducted in any of three basic modes: stare, transect, step-and-stare. The mode used depended on the science requirement. Each limb observation Limb 1, Limb 2 and Limb 3, were processed independently. Thus, each limb standard product consisted of three sets where each set consisted of 1,152 observations. For TES, the swath object represented one of these sets. Thus, each limb standard product consisted of three swath objects, one for each observation, Limb 1, Limb
Created
October 14 2024
Views
0
External Link
TL2CH4NS_7 is the Tropospheric Emission Spectrometer (TES)/Aura Level 2 Methane Nadir Special Observation Version 7 data product. TES was an instrument aboard NASA's Aura satellite and was launched from California on July 15, 2004. Data collection for TES is complete. TES Level 2 data contain retrieved species (or temperature) profiles at the observation targets and the estimated errors. The geolocation, quality, and other data (e.g., surface characteristics for nadir observations) were also provided. L2 modeled spectra were evaluated using radiative transfer modeling algorithms. The process, referred to as retrieval, compared observed spectra to the modeled spectra and iteratively updated the atmospheric parameters. L2 standard product files included information for one molecular species (or temperature) for an entire global survey or special observation run. A global survey consisted of a maximum of 16 consecutive orbits.
Nadir observations, which point directly to the surface of the Earth, are different from limb observations, which are pointed at various off-nadir angles into the atmosphere. Nadir and limb observations were added to separate L2 files, and a single ancillary file was composed of data that are common to both nadir and limb files. A Nadir sequence within the TES Global Survey was a fixed number of observations within an orbit for a Global Survey. Prior to April 24, 2005, it consisted of two low resolution scans over the same ground locations. After April 24, 2005, Global Survey data consisted of three low resolution scans. The Nadir standard product consists of four files, where each file is composed of the Global Survey Nadir observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Nadir observations only used a single set of filter mix.
A Global Survey consisted of observations along 16 consecutive orbits at the start of a two day cycle, over which 4,608 retrievals were performed. Each observation was the input for retrievals of species Volume Mixing Ratios (VMRs), temperature profiles, surface temperature, and other data parameters with associated pressure levels, precision, total error, vertical resolution, total column density, and other diagnostic quantities. Each TES Level 2 standard product reported information in a swath format conforming to the HDF-EOS Aura File Format Guidelines. Each Swath object was bounded by the number of observations in a global survey and a predefined set of pressure levels, representing slices through the atmosphere. Each standard product could have had a variable number of observations depending upon the Global Survey configuration and whether averaging was employed. Also, missing or bad retrievals were not reported. Further, observations were occasionally scheduled on non-global survey days. In general they were measurements made for validation purposes or with highly focused science objectives. Those non-global survey measurements were referred to as “special observations.”
A Limb sequence within the TES Global Survey was three high-resolution scans over the same limb locations. The Limb standard product consists of four files, where each file is composed of the Global Survey Limb observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Limb observations used a repeating sequence of filter wheel positions. Special Observations could only be scheduled during the 9 or 10 orbit gaps in the Global Surveys, and were conducted in any of three basic modes: stare, transect, step-and-stare. The mode used depended on the science requirement. Each limb observation Limb 1, Limb 2 and Limb 3, were processed independently. Thus, each limb standard product consisted of three sets where each set consisted of 1,152 observations. For TES, the swath object represented one of these sets. Thus, each limb standard product consisted of three swath objects, one for each observation, Limb 1, Limb
Created
October 14 2024
Views
0
External Link
TL2CH4LN_7 is the Tropospheric Emission Spectrometer (TES)/Aura Level 2 Methane Lite Nadir Version 7 data product. TES was an instrument aboard NASA's Aura satellite and was launched from California on July 15, 2004. Data collection for TES is complete. TES Level 2 data contain retrieved species (or temperature) profiles at the observation targets and the estimated errors. The geolocation, quality, and other data (e.g., surface characteristics for nadir observations) were also provided. L2 modeled spectra were evaluated using radiative transfer modeling algorithms. The process, referred to as retrieval, compared observed spectra to the modeled spectra and iteratively updated the atmospheric parameters. L2 standard product files included information for one molecular species (or temperature) for an entire global survey or special observation run. A global survey consisted of a maximum of 16 consecutive orbits. Nadir and limb observations were in separate L2 files, and a single ancillary file was composed of data that was common to both nadir and limb files.
Nadir observations, which point directly to the surface of the Earth, are different from limb observations, which are pointed at various off-nadir angles into the atmosphere. Nadir and limb observations were added to separate L2 files, and a single ancillary file was composed of data that are common to both nadir and limb files. A Nadir sequence within the TES Global Survey was a fixed number of observations within an orbit for a Global Survey. Prior to April 24, 2005, it consisted of two low resolution scans over the same ground locations. After April 24, 2005, Global Survey data consisted of three low resolution scans. The Nadir standard product consists of four files, where each file is composed of the Global Survey Nadir observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Nadir observations only used a single set of filter mix.
A Global Survey consisted of observations along 16 consecutive orbits at the start of a two day cycle, over which 4,608 retrievals were performed. Each observation was the input for retrievals of species Volume Mixing Ratios (VMRs), temperature profiles, surface temperature, and other data parameters with associated pressure levels, precision, total error, vertical resolution, total column density, and other diagnostic quantities. Each TES Level 2 standard product reported information in a swath format conforming to the HDF-EOS Aura File Format Guidelines. Each Swath object was bounded by the number of observations in a global survey and a predefined set of pressure levels, representing slices through the atmosphere. Each standard product could have had a variable number of observations depending upon the Global Survey configuration and whether averaging was employed. Also, missing or bad retrievals were not reported. Further, observations were occasionally scheduled on non-global survey days. In general they were measurements made for validation purposes or with highly focused science objectives. Those non-global survey measurements were referred to as “special observations.”
A Limb sequence within the TES Global Survey was three high-resolution scans over the same limb locations. The Limb standard product consists of four files, where each file is composed of the Global Survey Limb observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Limb observations used a repeating sequence of filter wheel positions. Special Observations could only be scheduled during the 9 or 10 orbit gaps in the Global Surveys, and were conducted in any of three basic modes: stare, transect, step-and-stare. The mode used depended on the science requirement. Each limb observation Limb 1, Limb 2 and Limb 3, were processed independently. Thus, each limb standard product consisted of three sets where each set consisted of 1,152 observations. For TES, the swath object r
Created
October 14 2024
Views
0
External Link
Atmospheric vertical profile estimates and associated errors including the mapping matrix to relate the reduced-size retrieval vectors, covariances, and averaging kernels back to the TES forward model pressure grid.
Created
October 14 2024
Views
0
External Link
TL2IRKN_8 is the Tropospheric Emission Spectrometer (TES)/Aura Level 2 Atmospheric Temperatures Limb Version 8 data product. TES was an instrument aboard NASA's Aura satellite and was launched from California on July 15, 2004. Data collection for TES is complete. Using TES radiances, Jacobians and ozone profiles with hemispherical integration, made it possible to compute the TOA (top-of-atmosphere) flux from the infrared ozone band (in W/m2), instantaneous radiative kernels (IRK) (in W/m2/ppb), and logarithmic instantaneous radiative forcing kernels (LIRK) (in W/m2) for ozone. The IRK provided unique information for questions of chemistry-climate coupling since this is a direct measure of the radiative role of ozone which explicitly accounted for more dominant radiative processes such as clouds and water vapor. These products can be compared to climate model predictions of the same quantities.
TES Level 2 data contains retrieved species (or temperature) profiles at the observation targets and the estimated errors. The geolocation, quality, and other data (e.g., surface characteristics for nadir observations) were also provided. L2 modeled spectra were evaluated using radiative transfer modeling algorithms. The process, referred to as retrieval, compared observed spectra to the modeled spectra and iteratively updated the atmospheric parameters. L2 standard product files included information for one molecular species (or temperature) for an entire global survey or special observation run. A global survey consisted of a maximum of 16 consecutive orbits.
A nadir sequence within the TES Global Survey was a fixed number of observations within an orbit for a Global Survey. Prior to April 24, 2005, it consisted of two low resolution scans over the same ground locations. After April 24, 2005, Global Survey data consisted of three low resolution scans. The Nadir standard product consisted of four files, where each file was composed of the Global Survey Nadir observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Nadir observations only used a single set of filter mix. A Global Survey consisted of observations along 16 consecutive orbits at the start of a two day cycle, over which 3,200 retrievals were performed. Each observation was the input for retrievals of species volume mixing ratios (VMRs), temperature profiles, surface temperature and other data parameters with associated pressure levels, precision, total error, vertical resolution, total column density, and other diagnostic quantities. Each TES Level 2 standard product reported information in a swath format conforming to the HDF-EOS Aura File Format Guidelines. Each Swath object was bounded by the number of observations in a global survey and a predefined set of pressure levels representing slices through the atmosphere. Each standard product could have had a variable number of observations depending upon the Global Survey configuration and whether averaging is employed. Also, missing or bad retrievals were not reported.
The organization of data within the Swath object was based on a superset of the Upper Atmosphere Research Satellite (UARS) pressure levels that was used to report concentrations of trace atmospheric gases. The reporting grid was the same pressure grid used for modeling. There were 67 reporting levels from 1211.53 hPa, which allowed for very high surface pressure conditions, to 0.1 hPa, about 65 km. In addition, the products reported values directly at the surface when possible or at the observed cloud top level. Thus in the Standard Product files each observation could potentially contain estimates for the concentration of a particular molecule at 67 different pressure levels within the atmosphere. However, for most retrieved profiles, the highest pressure levels were not observed due to a surface at lower pressure or cloud obscuration. For pressure levels corresponding to altitudes below the cloud top or s
Created
October 14 2024
Views
0